Mechanism of eosinophil induced signaling in cholinergic IMR-32 cells.

نویسندگان

  • David R Curran
  • Ross K Morgan
  • Paul J Kingham
  • Niamh Durcan
  • W Graham McLean
  • Marie Therese Walsh
  • Richard W Costello
چکیده

Eosinophils interact with nerve cells, leading to changes in neurotransmitter release, altered nerve growth, and protection from cytokine-induced apoptosis. In part, these interactions occur as a result of activation of neural nuclear factor (NF)-kappaB, which is activated by adhesion of eosinophils to neural intercellular adhesion molecule-1 (ICAM-1). The mechanism and consequence of signaling after eosinophil adhesion to nerve cells were investigated. Eosinophil membranes, which contain eosinophil adhesion molecules but not other eosinophil products, were coincubated with IMR-32 cholinergic nerve cells. The studies showed that there were two mechanisms of activation of NF-kappaB, one of which was dependent on reactive oxygen species, since it was inhibited with diphenyleneiodonium. This occurred at least 30 min after coculture of eosinophils and nerves. An earlier phase of NF-kappaB activation occurred within 2 min of eosinophil adhesion and was mediated by tyrosine kinase-dependent phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1). Coimmunoprecipitation experiments showed that both extracellular signal-regulated kinase 1/2 and IRAK-1 were recruited to ICAM-1 rapidly after coculture with eosinophil membranes. This was accompanied by an induction of ICAM-1, which was mediated by an IRAK-1-dependent pathway. These data indicate that adhesion of eosinophils to IMR-32 nerves via ICAM-1 leads to important signaling events, mediated via IRAK-1, and these in turn lead to expression of adhesion molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eosinophil adhesion to cholinergic nerves via ICAM-1 and VCAM-1 and associated eosinophil degranulation.

In vivo, eosinophils localize to airway cholinergic nerves in antigen-challenged animals, and inhibition of this localization prevents antigen-induced hyperreactivity. In this study, the mechanism of eosinophil localization to nerves was investigated by examining adhesion molecule expression by cholinergic nerves. Immunohistochemical and functional studies demonstrated that primary cultures of ...

متن کامل

Mechanism of Sphingosine 1-Phosphate- and Lysophosphatidic Acid-Induced Up-Regulation of Adhesion Molecules and Eosinophil Chemoattractant in Nerve Cells

The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve...

متن کامل

Diverse effects of eosinophil cationic granule proteins on IMR-32 nerve cell signaling and survival.

Activated eosinophils release potentially toxic cationic granular proteins, including the major basic proteins (MBP) and eosinophil-derived neurotoxin (EDN). However, in inflammatory conditions including asthma and inflammatory bowel disease, localization of eosinophils to nerves is associated with nerve plasticity, specifically remodeling. In previous in vitro studies, we have shown that eosin...

متن کامل

Characterization of Apoptosis Induced by Emodin and Related Regulatory Mechanisms in Human Neuroblastoma Cells

Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Recent studies have shown that emodin can induce or prevent cell apoptosis, although the precise molecular mechanisms underlying these effects are unknown. Experiments from the current study revealed that emodin (10-20 μM) induces apoptotic processes in the human neurob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 288 2  شماره 

صفحات  -

تاریخ انتشار 2005